

Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Instytut Energetyki - Hala Najwyższych Napięć

Wyładowanie zarejestrowane w Laboratorium Wysokich Napięć IEn. Udar łączeniowy 250/2500 µs

Michał Molas Instytut Energetyki, Zakład Wysokich Napięć Instytut Energetyki: <u>www.ien.com.pl</u> Kontakt email:

michal.molas@ien.com.pl

Plan prezentacji

Wprowadzenie

Instytut Energetyki Iskra długa

Część I - modelowanie

Modelowanie wyładowań elektrycznych Model fraktalny Modelowanie iskry długiej Zmodyfikowany model fraktalny iskry długiej

Część II - pomiary

Budowa i opis układu pomiarowego Analiza wyników pomiarów Wyniki pomiarów Pomiary a modelowanie

Slajd 2 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Instytut Energetyki Zakład Wysokich Napięć

Źródło: D., WU et al. "Challenges in bringing UHVDC from 800 kV to higher voltages." (2017)

Źródło: Zehong, Liu, et al. "Research Work of±1100kV UHVDC Technology." *State* Grid Corporation of China, *CIGRE*(2014)

Wymiary wewnętrzne Hali Najwyższych Napięć:	<i>40x40x33</i>
Możliwości probierczo-pomiarowe:	
- Udar piorunowy 1,2/50 μs	4 100 kV
- Udar łączeniowy 250/2500 μs	2 800 kV
- Napięcie przemienne 50 Hz	860 kV

Iskra długa Definicja zjawiska

Iskra długa to rodzaj wyładowania elektrycznego występującego w powietrzu o ciśnieniu zbliżonym do ciśnienia atmosferycznego, którego rozwój można opisać mechanizmem kanałowym strimerowo-liderowym.

Źródło: Flisowski, Zdobysław. Technika wysokich napięć. Wydawnictwa Naukowo-Techniczne, 2005

Źródło: Evaluation of Lightning Shielding Analysis Methods for EHV and UHV DC and AC Transmission-lines: Technical Brochures - 704 (2017)

Źródło: Evaluation of Lightning Shielding Analysis Methods for EHV and UHV DC and AC Transmissionlines: Technical Brochures - 704 (2017)

CzĘŚĆ I Modelowanie fraktalne i badania symulacyjne iskry długiej

Modelowanie wyładowań elektrycznych Rodzaje modeli

Źródło: Arevalo, Liliana, and Vernon Cooray. "Preliminary study on the modelling of negative leader discharges." Journal of Physics D: Applied Physics 44.31 (2011): 315204

"… we have to rely more on statistical results and phenomenological descriptions. Fractal approach is such a tool."

Źródło: CIGRE WG C4.26, "Evaluation of lightning shielding analysis methods for EHV and UHV DC and AC transmission lines," Technical Brochure 704, Oct. 2017

Model fraktalny Sposób symulacji wyładowań

Slajd 7 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Model fraktalny Zastosowanie

Slajd 8 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Modelowanie iskry długiej Model geometryczny

Geometria modelu fraktalnego do badania iskry długiej

"IEC 60071-2:2018 Insulation co-ordination - Part 2: Application guidelines",

"IEEE Recommended Practice for Overvoltage and Insulation Coordination of Transmission Systems at 1000 kV AC and Above,,,

CIGRE SC B2, "Overhead Lines" CIGRE Green Books, 2017

Slajd 9 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Modelowanie iskry długiej

Ocena jakościowa wyników symulacji

Wyniki symulacji

Rzeczywiste wyładowania

Slajd 10 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Zmodyfikowany model fraktalny iskry długiej Sposób symulacji wyładowania

Opis opracowanego modelu iskry długiej

Ocena jakościowa wyników symulacji

Slajd 11 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Zmodyfikowany model fraktalny iskry długiej

Ocena jakościowa wyników symulacji

Populacje wyładowań otrzymane w wyniku symulacji

Porównanie wyników symulacji z wynikami pomiarów

Slajd 12 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Zmodyfikowany model fraktalny iskry długiej Ocena ilościowa wyników symulacji

Średni wymiar fraktalny

Wymiar fraktalny populacji wyładowań

Ilustracja sposobu wyznaczania wymiaru fraktalnego populacji wyładowań dla dwóch populacji iskier, charakteryzujących się różnym rozmiarem obszaru, w którym rozwijają się wyładowania

N

b) populacja iskier o "wąskim" obszarze rozwoju wyładowań

Zmodyfikowany model fraktalny iskry długiej

Ocena ilościowa wyników symulacji

Model obliczeniowy stosowany podczas wyznaczania kątów krętości

Wyniki obliczeń kątów krętości dla czterech wybranych populacji

Slajd 14 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

CzĘŚĆ II Pomiary laboratoryjne iskry długiej

Budowa i opis układu pomiarowego Wytwarzanie wyładowań iskrowych

Schemat do generacji i pomiaru napięcia probierczego

Rozmieszczenie elementów układu pomiarowego

Slajd 16 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Możliwości badawczo-pomiarowe

Wymiary wewnętrzne Hali Najwyższych Napięć:	40x40x33
Możliwości probierczo-pomiarowe:	
- Udar piorunowy 1,2/50 μs	4 100 kV
- Udar łączeniowy 250/2500 μs	2 800 kV

Widok na laboratorium

Budowa i opis układu pomiarowego Rejestracja kanału wyładowania

Rejestracja obrazów przedstawiających kanał wyładowania

Slajd 17 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Ustawienie aparatów umożliwiające rekonstrukcję kanału

Analiza wyników pomiarów

Rekonstrukcja kanału wyładowania

Trajektoria na płaszczyźnie dwuwymiarowej płaszczyzna XZ płaszczyzna YZ 5 z [m] 5 z [m]

Przestrzenna rekonstrukcja trajektorii

3

2

-1

0

x [m]

1

Slajd 18 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Ilustracja wyznaczania trajektorii przy wykorzystaniu triangulacji

Porównanie metod wyznaczania trajektorii

Analiza wyników pomiarów

Rodzaj, biegunowość i wartość napięcia probierczego

Podsumowanie wykonanych badań					
Długość przerwy iskrowej	Układ elektrod	Rodzaj wyładowania	Biegunowość wyładowania	U _{mean} [kV]	
d = 3,3 m	kula-płyta (S-P)	udar łączeniowy (SI)	dodatnia (+)	1200	
			ujemna (-)	2161	
		udar piorunowy (LI)	dodatnia (+)	2002	
			ujemna (-)	2857	
	kula-kula (S-S)	udar łączeniowy (SI)	dodatnia (+)	1423	
			ujemna (-)	2295	
		udar piorunowy (LI)	dodatnia (+)	2101	
			ujemna (-)	2547	
d = 5,5 m	kula-płyta (S-P)	udar łączeniowy (SI)	dodatnia (+)	1598	
		udar piorunowy (LI)	dodatnia (+)	3181	
	kula-kula (S-S)	udar łączeniowy (SI)	dodatnia (+)	1935	
		udar piorunowy (LI)	dodatnia (+)	3364	

Slajd 19 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Analiza wyników pomiarów

Parametry opisujące trajektorię wyładowania

Wymiar fraktalny

Wpływ liczby wyładowań na wartość wymiaru fraktalnego

Kąty krętości

Rozkład wartości kątów wzdłuż kanału wyładowania

Długości oraz liczby segmentów tworzących kanał wyładowania

Długość iskier oraz względna długość segmentów

Wyniki pomiarów

Wykorzystanie wyników pomiarów na potrzeby modelowania

Pomiary a modelowanie

Usprawnienie procesu modelowania przez wykorzystanie sztucznej inteligencji

Slajd 22 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Pomiary a modelowanie Zastosowanie

Źródło: A. Wielonek, Archiwum Laboratorium Wysokich Napięć IEn

Udar łączeniowy 250/2500 µs biegunowości dodatniej

Pomiary a modelowanie Zastosowanie

Slajd 24 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Pomiary a modelowanie Zastosowanie

Badania modeli instalacji odgromowej linii UHV

Slajd 25 | Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Źródło: J. Takami and S. Okabe, 2007. Characteristics of Direct Lightning Strokes to Phase Conductors of UHV Transmission Lines. IEEE Trans. Power Delivery, Vol. 22, pp. 537-546.

49: 58-528 LS

Badania laboratoryjne i symulacyjne wyładowań iskrowych w napowietrznych układach izolacyjnych

Instytut Energetyki - Hala Najwyższych Napięć

Wyładowanie zarejestrowane w Laboratorium Wysokich Napięć IEn. Udar łączeniowy 250/2500 µs

Michał Molas Instytut Energetyki, Zakład Wysokich Napięć Instytut Energetyki: <u>www.ien.com.pl</u> Kontakt email:

michal.molas@ien.com.pl