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Application of wavelet transformation 
in high voltage processes 

 
 

Streszczenie. (Zastosowania przekształcenia falkowego w procesach wysokonapięciowych). Artykuł dotyczy zastosowania przekształcenia 
falkowego w opisie procesów wysokonapięciowych. Dokonano porównania korzyści tego przekształcenia w stosunku do przekształcenia Fouriera, 
opisano podstawowe zależności I wzory oraz odniesiono je do kolejnych etapów opracowania wyników. Zastosowania przekształcenia falkowego są 
ilustrowane przykładami. 
 
Abstract. This paper deals with application of wavelet transformation in high voltage processes. There are compared its benefits versus Fourier 
transformation. Basic forms and expressions refer to steps sequence for result evaluating. These results and application of wavelet transformation 
are illustrated in some examples. 
 
Słowa kluczowe: przekształcenie falkowe, przekształcenie Fouriera, zastosowania falek. 
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Introduction 
 Wavelets are mathematical functions that cut up data 
into different frequency components, and then study each 
component with a resolution matched to its scale. They 
have advantages over traditional Fourier methods in 
analyzing physical situations where the signal contains 
discontinuities and sharp spikes [1]. This paper introduces 
wavelets to the interested technical person outside of the 
digital signal processing field. In this paper is also 
compared wavelet transforms with Fourier transforms, state 
properties and other special aspects of wavelets, and finish 
with some interesting applications such as high voltage 
processes. 
 The wavelet analysis procedure is to adopt a wavelet 
prototype function, called an analyzing wavelet or mother 
wavelet. Temporal analysis is performed with a contracted, 
high-frequency version of the prototype wavelet, while 
frequency analysis is performed with a dilated, low-
frequency version of the same wavelet. Because the 
original signal or function can be represented in terms of a 
wavelet expansion (using coefficients in a linear 
combination of the wavelet functions), data operations can 
be performed using just the corresponding wavelet 
coefficients. And if you further choose the best wavelets 
adapted to your data, or truncate the coefficients below a 
threshold, your data is sparsely represented. This sparse 
coding makes wavelets an excellent tool in the field of data 
compression [1]. 
 Other applied fields that are making use of wavelets 
include astronomy, acoustics, nuclear engineering, sub-
band coding, signal and image processing, 
neurophysiology, music, magnetic resonance imaging, 
speech discrimination, optics, fractals, turbulence, 
earthquake-prediction, radar, human vision, and pure 
mathematics applications such as solving partial differential 
equations. 
 
Fourier Analysis 
 Fourier's representation of functions as a superposition 
of sines and cosines has become common for both the 
analytic and numerical solution of differential equations and 
for the analysis and treatment of communication signals. 
Fourier and wavelet analysis have some very strong links. 
 Before 1930, the main branch of mathematics leading to 
wavelets began with Joseph Fourier (1807) with his theories 

of frequency analysis, now often referred to as Fourier 
synthesis. He asserted that any 2⋅π-periodic function f(x) is 
the sum 
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of its Fourier series. The coefficients a0, ak, and bk are 
calculated by 
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 Fourier's assertion played an essential role in the 
evolution of the ideas mathematicians about the functions. 
He opened up the door to a new functional universe.  
 After 1807, by exploring the meaning of functions, 
Fourier series convergence, and orthogonal systems, 
mathematicians gradually were led from their previous 
notion of frequency analysis to the notion of scale analysis. 
That is, analyzing f(x) by creating mathematical structures 
that vary in scale. That is, construct a function, shift it by 
some amount, and change its scale. Apply that structure in 
approximating a signal. Now repeat the procedure. Take 
that basic structure, shift it, and scale it again. Apply it to the 
same signal to get a new approximation. And so on. It turns 
out that this sort of scale analysis is less sensitive to noise 
because it measures the average fluctuations of the signal 
at different scales [1]. 
 
Fourier Transforms 
 The Fourier transform's utility lies in its ability to analyze 
a signal in the time domain for its frequency content. The 
transform works by first translating a function in the time 
domain into a function in the frequency domain. The signal 
can then be analyzed for its frequency content because the 
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Fourier coefficients of the transformed function represent 
the contribution of each sine and cosine function at each 
frequency. An inverse Fourier transform does just what 
you'd expect; transform data from the frequency domain 
into the time domain [1]. 
 
Discrete Fourier Transforms 
 The discrete Fourier transform (DFT) estimates the 
Fourier transform of a function from a finite number of its 
sampled points. The sampled points are supposed to be 
typical of what the signal looks like at all other times.  
The DFT has symmetry properties almost exactly the same 
as the continuous Fourier transform. In addition, the formula 
for the inverse discrete Fourier transform is easily 
calculated using the one for the discrete Fourier transform 
because the two formulas are almost identical.  
 
Windowed Fourier Transforms 
 If f(t) is a non-periodic signal, the summation of the 
periodic functions, sine and cosine, does not accurately 
represent the signal. You could artificially extend the signal 
to make it periodic but it would require additional continuity 
at the endpoints. The windowed Fourier transform (WFT) is 
one solution to the problem of better representing the non-
periodic signal. The WFT can be used to give information 
about signals simultaneously in the time domain and in the 
frequency domain.  
 With the WFT, the input signal f(t) is chopped up into 
sections, and each section is analyzed for its frequency 
content separately. If the signal has sharp transitions, the 
input data are windowed so that the sections converge to 
zero at the endpoints [2]. This windowing is accomplished 
via a weight function that places less emphasis near the 
interval's endpoints than in the middle. The effect of the 
window is to localize the signal in time. 
 
Fast Fourier Transforms 
 To approximate a function by samples, and to 
approximate the Fourier integral by the discrete Fourier 
transform, requires applying a matrix whose order is the 
number sample points n. Since multiplying a matrix by a 
vector costs on the order of arithmetic operations, the 
problem gets quickly worse as the number of sample points 
increases. However, if the samples are uniformly spaced, 
then the Fourier matrix can be factored into a product of just 
a few sparse matrices, and the resulting factors can be 
applied to a vector in a total of order arithmetic operations. 
This is the so-called fast Fourier transform or FFT [3]. 
 
Wavelet vs. Fourier Transforms 
Similarities between Fourier and Wavelet Transforms 
 The fast Fourier transform (FFT) and the discrete 
wavelet transform (DWT) are both linear operations that 
generate a data structure that contains segments of various 
lengths, usually filling and transforming it into a different 
data vector of length .  
 The mathematical properties of the matrices involved in 
the transforms are similar as well. The inverse transform 
matrix for both the FFT and the DWT is the transpose of the 
original. As a result, both transforms can be viewed as a 
rotation in function space to a different domain. For the 
FFT, this new domain contains basis functions that are 
sines and cosines. For the wavelet transform, this new 
domain contains more complicated basis functions called 
wavelets, mother wavelets, or analyzing wavelets.  
 Both transforms have another similarity. The basis 
functions are localized in frequency, making mathematical 
tools such as power spectra (how much power is contained 
in a frequency interval) and scalegrams, useful at picking 
out frequencies and calculating power distributions [1]. 

Dissimilarities between Fourier and Wavelet Transforms 
 The most interesting dissimilarity between these two 
kinds of transforms is that individual wavelet functions are 
localized in space. Fourier sine and cosine functions are 
not. This localization feature, along with wavelets' 
localization of frequency, makes many functions and 
operators using wavelets "sparse" when transformed into 
the wavelet domain. This sparseness, in turn, results in a 
number of useful applications such as data compression, 
detecting features in images, and removing noise from time 
series [1]. 
 One way to see the time-frequency resolution 
differences between the Fourier transform and the wavelet 
transform is to look at the basis function coverage of the 
time-frequency plane [4]. Figure 1 shows a windowed 
Fourier transform, where the window is simply a square 
wave. The square wave window truncates the sine or 
cosine function to fit a window of a particular width. 
Because a single window is used for all frequencies in the 
WFT, the resolution of the analysis is the same at all 
locations in the time-frequency plane. 
 

 
Fig. 1 Fourier basis functions, time-frequency tiles, and coverage of 
the time-frequency plane [1]. 
 
 An advantage of wavelet transforms is that the windows 
vary. In order to isolate signal discontinuities, one would like 
to have some very short basis functions. At the same time, 
in order to obtain detailed frequency analysis, one would 
like to have some very long basis functions. A way to 
achieve this is to have short high-frequency basis functions 
and long low-frequency ones. This happy medium is exactly 
what you get with wavelet transforms. Figure 2 shows the 
coverage in the time-frequency plane with one wavelet 
function, the Daubechies wavelet. 

 
Fig. 2 Daubechies wavelet basis functions, time-frequency tiles, 
and coverage of the time-frequency plane [1]. 
 
 One thing to remember is that wavelet transforms do not 
have a single set of basis functions like the Fourier 
transform, which utilizes just the sine and cosine functions. 
Instead, wavelet transforms have an infinite set of possible 
basis functions. Thus wavelet analysis provides immediate 
access to information that can be obscured by other time-
frequency methods such as Fourier analysis. 
 
Shape of Some Wavelets 
 Wavelet transforms comprise an infinite set. The 
different wavelet families make different trade-offs between 
how compactly the basis functions are localized in space 
and how smooth they are. 
 Some of the wavelet bases have fractal structure. The 
Daubechies wavelet family is one example (see Figure 3). 
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Fig. 3 The fractal self-similarity of the Daubechies mother wavelet. 
This figure was generated using the WaveLab [1]. 
 
 Within each family of wavelets (such as the Daubechies 
family) are wavelet subclasses distinguished by the number 
of coefficients and by the level of iteration. Wavelets are 
classified within a family most often by the number of 
vanishing moments. This is an extra set of mathematical 
relationships for the coefficients that must be satisfied, and 
is directly related to the number of coefficients [5]. For 
example, within the Coiflet wavelet family are Coiflets with 
two vanishing moments, and Coiflets with three vanishing 
moments. In Figure 4, I illustrate several different wavelet 
families. 
 

 
 
Fig. 4. Several different families of wavelets. The number next to 
the wavelet name represents the number of vanishing moments 
(A stringent mathematical definition related to the number of 
wavelet coefficients) for the subclass of wavelet. These figures 
were created using WaveLab [1]. 
 
Wavelet Analysis 
The Discrete Wavelet Transform 
 Dilations and translations of the “Mother function,” or 
“analyzing wavelet” define an orthogonal basis, our wavelet 
basis: 
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 The variables s and l are integers that scale and dilate 
the mother function Φ(x) to generate wavelets, such as a 
Daubechies wavelet family. The scale index s indicates the 
wavelet's width, and the location index l gives its position. 
Notice that the mother functions are rescaled, or "dilated" 
by powers of two, and translated by integers. What makes 
wavelet bases especially interesting is the self-similarity 
caused by the scales and dilations. Once we know about 
the mother functions, we know everything about the basis.  
 To span our data domain at different resolutions, the 
analyzing wavelet is used in a scaling equation: 
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where W(x) is the scaling function for the mother function 
Φ(x), and ck are the wavelet coefficients. The wavelet 
coefficients must satisfy linear and quadratic constraints of 
the form  
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where δ is the delta function and l is the location index.  
 
 One of the most useful features of wavelets is the ease 
with which a scientist can choose the defining coefficients 
for a given wavelet system to be adapted for a given 
problem. In Daubechies' original paper [6], she developed 
specific families of wavelet systems that were very good for 
representing polynomial behavior. The Haar wavelet is even 
simpler, and it is often used for educational purposes.  
 It is helpful to think of the coefficients as a filter. The 
filter or coefficients are placed in a transformation matrix, 
which is applied to a raw data vector. The coefficients are 
ordered using two dominant patterns, one that works as a 
smoothing filter (like a moving average), and one pattern 
that works to bring out the data's "detail" information. These 
two orderings of the coefficients are called a quadrature 
mirror filter pair in signal processing parlance. A more 
detailed description of the transformation matrix can be 
found elsewhere [3].  
 To complete our discussion of the DWT, let's look at 
how the wavelet coefficient matrix is applied to the data 
vector. The matrix is applied in a hierarchical algorithm, 
sometimes called a pyramidal algorithm. The wavelet 
coefficients are arranged so that odd rows contain an 
ordering of wavelet coefficients that act as the smoothing 
filter, and the even rows contain an ordering of wavelet 
coefficient with different signs that act to bring out the data's 
detail. The matrix is first applied to the original, full-length 
vector. Then the vector is smoothed and decimated by half 
and the matrix is applied again. Then the smoothed, halved 
vector is smoothed, and halved again, and the matrix 
applied once more. This process continues until a trivial 
number of "smooth-smooth-smooth..." data remain. That is, 
each matrix application brings out a higher resolution of the 
data while at the same time smoothing the remaining data. 
The output of the DWT consists of the remaining "smooth 
(etc.)" components, and all of the accumulated "detail" 
components.  
 
The Fast Wavelet Transform 
 The DWT matrix is not sparse in general, so we face the 
same complexity issues that we had previously faced for 
the discrete Fourier transform [7]. We solve it as we did for 
the FFT, by factoring the DWT into a product of a few 
sparse matrices using self-similarity properties. The result is 
an algorithm that requires only order n operations to 
transform an n-sample vector. This is the "fast" DWT of 
Mallat and Daubechies. 
 
Wavelet Packets 
 The wavelet transform is actually a subset of a far more 
versatile transform, the wavelet packet transform [8].  
 Wavelet packets are particular linear combinations of 
wavelets [7]. They form bases which retain many of the 
orthogonality, smoothness, and localization properties of 
their parent wavelets. The coefficients in the linear 
combinations are computed by a recursive algorithm 
making each newly computed wavelet packet coefficient 
sequence the root of its own analysis tree.  
 
Adapted Waveforms 
 Because we have a choice among an infinite set of 
basis functions, we may wish to find the best basis function 
for a given representation of a signal [7]. A basis of adapted 
waveform is the best basis function for a given signal 
representation. The chosen basis carries substantial 
information about the signal, and if the basis description is 
efficient (that is, very few terms in the expansion are 
needed to represent the signal), then that signal information 
has been compressed.  
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According to Wickerhauser [7] some desirable properties for 
adapted wavelet bases are: 
- speedy computation of inner products with the other basis 

functions;  
- speedy superposition of the basis functions;  
- good spatial localization, so researchers can identify the 

position of a signal that is contributing a large component;  
- good frequency localization, so researchers can identify 

signal oscillations; and  
- independence, so that not too many basis elements match 

the same portion of the signal.  
 For adapted waveform analysis, researchers seek a 
basis in which the coefficients, when rearranged in 
decreasing order, decrease as rapidly as possible. To 
measure rates of decrease, they use tools from classical 
harmonic analysis including calculation of information cost 
functions. This is defined as the expense of storing the 
chosen representation. Examples of such functions include 
the number above a threshold, concentration, entropy, 
logarithm of energy, Gauss-Markov calculations, and the 
theoretical dimension of a sequence.  
 
Wavelet Applications 
Applications of Wavelets in Signal Processing 
 From the derivation of the wavelet transform as an 
alternative to the short-time Fourier transform (STFT), it is 
clear that on of the main applications will be in non-
stationary signal analysis. 
 Applications of wavelet decompositions in numerical 
analysis, e.g. for solving partial differential equations, seem 
very promising because of the “zooming” property which 
allows a very good representation of discontinuities, unlike 
the Fourier transform. 
 Perhaps the biggest potential of wavelets has been 
needed for signal compression. Since discrete wavelet 
transforms are essentially subband coding systems, and 
since subband coders have been successful in speech and 
image compression, it is clear that wavelets will find 
immediate application in compression problems. The only 
difference with traditional subband coders is the fact that 
filters are designed to be regular (that is, they have many 
zeroes at z = 0 or z = π). Note that although classical 
subband filters are not regular, they have been designed to 
have good stopbands and thus are close to being “regular”, 
at least for the first few octaves of subband decomposition. 
 
Denoising Noisy Data 
 In diverse fields from planetary science to molecular 
spectroscopy, scientists are faced with the problem of 
recovering a true signal from incomplete, indirect or noisy 
data. Can wavelets help solve this problem? The answer is 
certainly "yes," through a technique called wavelet 
shrinkage and thresholding methods that David Donoho has 
worked on for several years [9].  
 The technique works in the following way. When you 
decompose a data set using wavelets, you use filters that 
act as averaging filters and others that produce details [10]. 
Some of the resulting wavelet coefficients correspond to 
details in the data set. If the details are small, they might be 
omitted without substantially affecting the main features of 
the data set. The idea of thresholding, then, is to set to zero 
all coefficients that are less than a particular threshold. 
These coefficients are used in an inverse wavelet 
transformation to reconstruct the data set. Figure 6 is a set 
of "before" and "after" illustrations of a partial discharge 
signal in a high voltage cable. The signal is transformed, 
thresholded and inverse-transformed. The technique is a 
significant step forward in handling noisy data because the 
denoising is carried out without smoothing out the sharp 

structures. The result is cleaned-up signal that still shows 
important details.  
 To improve the accuracy, wavelet decomposition can be 
used to remove the high-frequency noise from the signal. 
Successive approximations become less noisy as more 
high frequency information is filtered out. Thus this provides 
a simple method to de-noise the signal. Fig. 6(b) shows the 
de-noised signal using level-5 approximation and 
Daubechies db3 wavelet. In comparison to the original 
signal, it is much cleaner and the reflected pulse can be 
clearly seen. The measured reflection time corresponds to 
twice the cable length. This indicates the fault is at the cable 
termination rather than inside the cable and thus agrees 
with the ultrasonic detector finding. 
 
a) 

 
 
b) 

 
 
c) 

 
 

Fig. 6 "Before" and "after" illustrations of a signal. The original 
signal is at the top a), the denoised signals in the middle b) and at 
the bottom c) [11]. 
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 One disadvantage of the above method is that the fast 
changing features of the original signal is lost. Note the 
smoothing effect on the wavefront in Fig. 6(b). This would 
reduce the accuracy of the measurement of the time delay 
between the first pulse and its reflection. An elegant 
alternative to overcome this problem is the technique called 
thresholding whereby the details are discarded only if the 
magnitudes exceed a certain limit. The procedure is to 
examine the details vectors of the wavelet decomposition, 
select the appropriate threshold coefficients and reconstruct 
the new details signals. The toolbox provides two calling 
functions: one to calculate the default threshold parameters 
and the other to perform the actual de-noising. Applying 
these functions, the result is shown in Fig. 6(c). It retains 
well the sharp detail of the original but is somewhat noisier. 
It may be possible to improve the result by trying other 
thresholds [11]. 
 
Another application of wavelet transform in high voltage 
processes 
- power quality disturbance recognition, 
- fault detection in electromotors, 
- fault diagnosis of nonlinear analog circuits, 
- monitoring of partial discharges in high voltage cables, 
- signal figures compression, 
- and many more. 
 
Conclusion 
 Most of basic wavelet theory has been done. The 
mathematics has been worked out in excruciating detail and 
wavelet theory is now in the refinement stage. The 
refinement stage involves generalizations and extensions of 
wavelets, such as extending wavelet packet techniques.  
 The future of wavelets lies in the as-yet uncharted 
territory of applications. Wavelet techniques have not been 
thoroughly worked out in applications such as practical data 
analysis, where for example discretely sampled time-series 
data might need to be analyzed. Such applications offer 
exciting avenues for exploration. 

This work was supported by Science and Technology 
Assistance Agency  under the contact number  APVV-20-
006005 and VEGA 1/3142/06 projects. 
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