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Streszczenie. (Analiza fazowo-rozdzielczych obrazów wyładowań niezupełnych generowanych w sprężonym powietrzu w niejednorodnym 
polu elektrycznym). Artykuł przedstawia wyniki badań wyładowań niezupełnych (wnz) w układzie elektrod o polu niejednorodnym przy ciśnieniu 
podwyższonym w zakresie do 0,6 MPa. Rejestrowano obrazy fazowo-rozdzielcze wnz dla stwierdzenia występowania formy bezimpulsowej 
wyładowań przy napięciu krytycznym. Mechanizm wyładowań niezupełnych przy podwyższonym ciśnieniu wykazuje cechy podobne jak przy 
ciśnieniu atmosferycznym, przy czym wyraźny jest wpływ ładunku przestrzennego i procesów dyfuzyjnych. 
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Abstract. The paper presents results of investigations of partial discharges (PD) in point-to-plane electrode configuration at high pressures up to 
0.6 MPa. The PD phase-resolved images were registered for pulseless form of PD detection at critical voltage. Mechanism of partial discharges  at 
higher pressures shows similar features as for normal pressure, the influence of space charge and diffusion processes are observed.  
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The breakdown voltage increase linearly with pressure 
in uniform electric field up to about 1,5MPa and that level 
the curve saturates. There are some methods for 
calculation of breakdown voltages for uniform electric field 
in air at higher pressures. At the high pressures deviations 
from the similarity law of discharges mechanism are 
present. The breakdown voltage values vs. pressure at 
different electrode distance and uniform electric field are 
shown in the Figure 1.  
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Fig.1. The breakdown voltage vs. pressure at electrode distance d 
equal to: 1) 5 [mm], 2) 10 [mm], 3) 15 [mm], 4) 20 [mm] (uniform 
electric field) 
 

It concerns the situations when the discharges are 
initiated in the space surrounding a micro-sharpness in the 
insulating system (e.g. GIS) or outside, which results in 
disturbances. 

As the comparison basis partial discharge phase-
resolved distributions and charge-amplitude distributions 
registered for testing voltages from 1.2U0 to 3.0U0 have 
been used. 
 
The measuring method and experimental setup 

The laboratory measurements in the model electrode 
arrangement with distance 20 mm in the point-to-plane 
configuration and with a needle electrode tip radii of 185μm 
has been performed.  

The electric stress along the axis of the needle-to-plane 
configuration can be calculated by following equation: 
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where ξ is the distance from the needle tip, the distance 
between needle and plane electrodes and r is the radius of 
the needle tip. 
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The inception electric stress E0 at the needle radii of 
185μm was about 16kVmm-1, but the space charge effect 
was not taken into account. 

Experiments described in the paper were performed in 
specially projected and constructed high voltage and high 
pressure gas chamber. The tested model electrode 
arrangement was placed inside the chamber.  

The pressure in the tank has been controlled using 
compressor and manometer. The pressure levels have 
been varied from normal atmospheric value (0.1 MPa) up to 
0.6 MPa. 

For partial discharge detection and measurements the 
classical measurement system with wideband detection 
circuit described in IEC60270 standard [8] has been applied 
(Fig. 2). Measuring impedance Zm was connected in series 
to electrode system placed inside high pressure chamber. 

 

 
 

Fig. 2. Experimental setup: R1/R2 – high voltage divider;  
Ck – coupling capacitor, Zm – measuring impedance; SCU – signal 
conditioning unit. 
 
Measurement results 

Characteristics of inception voltage U0 and breakdown 
voltage Up vs. pressure for point-to-plane electrode system 
(and as reference for sphere-to-sphere electrode system) 
are shown at the Figure 3.     
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Fig. 3: The PD inception voltage U0 and breakdown voltage Up vs. 
pressure for two electrode configurations, (electrodes distance 
ξ=20mm); 1) sphere electrode system, 2) point-to-plane system 
 

The PD-phase distributions were registered for testing 
voltages up to (3÷4)U0. Selected distributions collected for 
atmospheric air are shown in Figure 4.  

Observed partial discharges in point-to--plane electrode 
configuration are Trichel-like discharges in negative half of 
ac cycle. These pulse-type discharges are caused by the 
periodic reduction of the electric stress near the cathode 
due to the presence of a space charge. 
 
 

 
 

 
 

 
 

 
Fig. 4. The PD-phase distributions at U/U0: a) 1.25; b) 2.0; c) 2.5; 
d) 3.0 (pressure p = 0.1 MPa) 
 
Here appears the influence of testing voltage on: 

- number of pulses N; 
- phase range zϕ of pulses in half of cycle; 
- maximal pulse charge Qm and also on the shape of 

PD-pulse distributions. 
In PD mechanism in strongly inhomogeneous electric 

field in air one may notice the characteristic value of voltage 
– critical voltage Ucr [7]. At this value of testing voltage 
transition from pulse to pulseless form of discharges is 
starting. Pulse-height distributions are normal-like type 
(Gaussian) (Fig.5a) only up to certain voltage.  

At the critical voltage, pulse-height distribution shows 
two groups of PD pulses (Fig. 5b), corresponding to 
changes in PD-phase distribution (Fig. 4d). 

This effect influences on the repetition rate N of PD 
pulses – namely – repetition rate N increases up to the 
critical voltage Ucr above which the discharge frequency 
decreases to a few pulses per half-cycle (Fig.6). Decreasing 
of the PD repetition rate above Ucr is accompanied by the 
change from pulse-type discharges to the partially pulse-
less discharges. 
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Fig. 5. Pulse-height distributions at U/U0 equal to: a) 1.25; b) 3.0 
(pressure p = 0.1MPa) 
 

 
Fig. 6. Influence of test voltage on the repetition rate N; air gap 
15mm; tip needle: 85μm, 345μm, 518μm 
 

At higher pressures mechanism of discharges in 
strongly inhomogeneous field manifests significant 
changes. Difference between inception voltage U0 and 
breakdown voltage Up increases (Fig. 3) up to pressure 
about 0.6 MPa stable discharges initiated near the needle 
electrode are present. Such a situation is not occurring in 
a weak inhomogeneous electric field, where inception 
voltage U0 is approximately equal to breakdown voltage. 
The PD-phase distributions at 0.4 MPa and 0.6 MPa are 
presented in figures 7 and 8 respectively. 

 
 

 
 

 
Fig. 7. PD-phase distributions at U/U0 equal to: a) 1.25; b) 2.0; 
c) 3.0; (pressure p = 0.4MPa) 
 

 
 

 
 
Fig. 8. PD-phase distributions at U/U0 equal to: a) 1.25; b) 2.0; 
(pressure p=0.6MPa) 
 

 
 

 
Fig. 9. Repetition rate N vs. relative testing voltage U/U0 at the 
pressures: 1) 0.2 MPa, 2) 0.4 MPa, 3) 0.6 MPa 
 

PRZEGLĄD ELEKTROTECHNICZNY - KONFERENCJE, ISSN 1731-6106, R. 5 NR 3/2007 86 



The effect of critical voltage on the repetition rate at the 
high pressure is similar to effect at 0.1 MPa (Fig.9). 

At high pressure, due to attenuation of diffusion process, 
the local space charge density can be substantial and the 
development of discharges may be hindered. In the 
considered range of pressure changes from 0.1 to 0.6 MPa, 
the PD inception voltage has increased approximately 3 
times. 

The comparison of changes of maximal charge Qm and 
phase range zϕ in the pressure range 0.1, 0.4 and 0.6 MPa 
(Fig. 10) yields information about the physical mechanism. 

 

 
 
Fig. 10. The maximal charge Qm and phase range zϕ vs. relative 
voltage U/U0 at different values of pressure: 1) 0.1 MPa; 
2) 0.4 MPa; 3) 0.6 MPa 
 

 

 
 
Fig. 11. Maximal charge Qm and phase range zϕ vs pressure p 
1) U=Uo, 2) U=3Uo 

 

Conclusions 
In model investigations of partial discharges in strong 

non-uniform field in air, the PD inception voltage is a non-
linear function of pressure. The influence of pressure of 
compressed air on the value of maximal charge Qm and the 
mechanism of discharges has been shown (Fig. 11).  

The maximal charge is decreasing while increasing the 
pressure. However, the most dynamic range is up to 
0.3 MPa, and then the Qm value is almost constant. The 
PD-phase distributions confirm the presence of pulseless 
form of discharges, but at the much lower value of maximal 
charge. One may conclude that the PD mechanism at 
higher pressure in non-uniform field will demonstrate the 
distinct PD forms than at atmospheric pressure. 
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